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VLHC Parameters 

  Stage 1 Stage 2 
Beam energy Ep 20 TeV 87.5 TeV 
Luminosity L 1034 cm-2s-1 2⋅1034 cm-2s-1 
Magnetic field B0 1.96 T 10 T 
Injection energy Einj 0.9 TeV 10 TeV 
Bunch spacing τb 18.9 ns 
Circumference C=2πR 232 km 
Revolution frequency f0 1294 Hz 
Number of bunches Nb 36943 
RF frequency fRF 477.9 MHz 
Betatron tunes ν⊥ ~214 
Momentum compaction α 2.1⋅10-5 
Beta-function at IP β∗ 30 cm 50 cm 
Head-on beam-beam tune shift per IP ξ 1.8⋅10-2 1.8⋅10-2 
Number of particles per bunch  N 2.5⋅1010 
Beam current Ib 0.190 A 0.175 A 
RF voltage per turn, top/injection energy V0 50/50 MeV 50/50 MeV 
Synchrotron frequency, top/injection energy fs 2.32/10.9 Hz 1.1/3.28 Hz 
Rms momentum spread, top/injection energy σp 1.5/14.9⋅10-4 0.5/2.4⋅10-4 
Rms bunch length, top/injection energy σs 6.6/14.2 cm 4.5/7.8 cm 
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2. Transverse Impedance for Vacuum Chamber with Thin Wall 
Impedance calculation for round vacuum chamber  
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Matching solutions at boundaries: 
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I0 – the beam current 
x0 – amplitude of transverse 

beam motion 
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Taking into account contribution from electric field of the beam we obtain an expression 
for the vacuum chamber transverse impedance (case of positive frequency): 
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There are following asymptotes for the transverse impedance (ω > 0): 
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• There is no simple expression for imaginary part of the impedance in the case 
dad ≥≥ δ  and Eq. (1) has to be used 

• To simplify the solution the expression for the vector potential inside conductor was 
chosen for the flat geometry (instead of Bessel functions of imaginary argument) and 
therefore the result is not quite accurate if the wall is sufficiently thick. 
Ø In particular the equation yields incorrect value for imaginary part of the impedance 

at very small frequencies, ad≥δ   
§ The following correction term is applied to fix the problem  
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§ Note that although this term corrects asymptotic behavior of the impedance at low 
frequencies it does not change the impedance at frequencies of interest of VLHC.  
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d = 0.1 mm        d = 1 mm 

Real (red) and imaginary (brown) parts of the transverse impedance and asymptotes for 
the real part of the impedance as function of frequency for round vacuum chamber: Al, 
300 K, ρ = 2.74 µΩ⋅cm, a = 9 mm.  

• Skin-layer thickness is 3.3 mm at f0/2=646 Hz.  
§ Peak is achieved when ad≈2δ  and its value does not depend on vacuum 

chamber thickness  
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Transverse Impedance of Elliptic Vacuum Chamber  
• Impedance of flat vacuum chamber is about half of the round vacuum chamber 

impedance. For an estimate we will introduce the 
effective radius of the vacuum chamber:  
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so that we would get correct result 
for cases ba = , ba >> and ba << . 

• For impedance estimates we will 
substitute aeff instead of a into Eq.(1)  

Vacuum Chamber Conductivity 
• Vacuum chamber cooling 

significantly reduces transverse 
impedances 
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Detuning Wake 
• For round vacuum chamber the beam excites 

dipole field behind him. That corresponds to 
normal wake field W(s). 

• For non-round vacuum chamber there are 
quadrupole field and higher multipoles. 
Contribution corresponding to quadrupole 
field is described by detuning wake D(s): 
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• Detuning wake changes betatron tunes for tail particles and can cause non-linear 
resonances.  
Ø For round vacuum chamber       

Ø D(s) = 0  . 
Ø For two parallel plates 
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*A.Burov, V.Danilov “Suppression of transverse 
instabilities by asymmetries in the chamber geometry,” 
PRL, 82, 1999, p.2286. 
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Attenuation of the beam magnetic field by the elliptic aluminum vacuum chamber at 300 K,  
a = 9 mm, b = 14 mm; red line - d=1 mm, blue line - d=2 mm  
• There is only about 30% attenuation for thickness of 1 mm at the first unstable betatron 

sideband 
Ø That implies that the beam sees everything around vacuum chamber and can acquire additional 

contribution to the impedance from the surroundings if appropriate measures are not taken. 
• 2 mm vacuum chamber attenuates the beam field by more than 2 times  
Ø That is better but still requires careful attitude to what can be located in near vicinity of 

vacuum chamber  
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Multibunch Transverse Instability due to Finite Wall Resistivity  
Estimate of tune shift and instability increment due to vacuum chamber impedance 
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Let the beam position for mode n of continuous beam be as ( )( )θωθ ntnqi oextx −−= 0),(  
Then, the force acting on the reference particle is  
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The exact result for the betatron tune shift of n-th mode for the bunched beam 
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[q] – the fractional part of the betatron tune ν 
N  – the number of bunches, [ ]2/)1(,2/ −−∈ NNn  

( )ω⊥Z   – the transverse impedance per unit length averaged over the ring 
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The Dimensionless Increment  
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• The definition of the transverse impedance yields that impedance at a negative 
frequency is related to the impedance at positive frequency through its complex 
conjugated value  
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• At low frequencies impedance is completely determined by the wall resistivity.  
Ø For ω > 0 real part of the impedance is positive ⇒ coherent motion is damped 
§ ( ) 2/)1...(0,][0 −=+= Nnnqn ωω  
Ø For ω < 0 real part of the impedance is negative ⇒ coherent motion is unstable 
§ ( ) 2/...1,][0 Nnqnn =−= ωω  

⇒ If the impedance grows with frequency decrease preferable fractional tune is in the 
range [0 – 0.5] 
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Asymptotics for the dimensionless increment 
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Dependence of the dimensionless decrement (left) and the betatron tune shift (right) on the mode 
frequency for elliptic aluminum vacuum chamber at 300 K, a = 9 mm, b = 14 mm;  
red line - d=1 mm, blue line - d=2 mm; brown dashed line - a = 12 mm, b = 20 mm, d=2 mm. 
 
• 9 mm vacuum chamber yields instability growth time about one revolution 
Ø Increase of wall thickness from 1 mm to 2 mm decreases  
§ the growth time by about 1.5 times 
§ the coherent tune shift by about 2 times to ∆ν ~ 0.1 

• To decrease decrement to about 2 revolutions one needs to increase vacuum chamber 
size to about 12×20 mm 
Ø That also decreases the coherent tune shift to ∆ν ~ 0.03 (30 deg per turn) 
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Coherent and incoherent tune shifts 
• The interaction of the beam with round vacuum chamber  
Ø causes instabilities and changes frequencies of coherent beam motion 
Ø but does not change incoherent particle frequencies and cannot cause non-linear resonance 

• In the case of elliptic vacuum chamber detuning wake is not zero. That means that the 
interaction of the beam with vacuum chamber creates additional focusing fields which 
changes incoherent particle tunes 
Ø  In the case of flat vacuum chamber and uniformly filled ring the frequency of all particles is 

shifted by the same amount: 
νγβ

π
ν 233

22

0 24 amc
ReIb

ic −=∆  

∆νic0= −0.205 for half-gap a=9 mm. It is equal to half of the coherent tune shift at 
zero frequency. ∆νic0 can be compensated by betatron frequency adjustments 
proportional to the beam current  

Ø If the ring is partially filled then there is tune variations proportional to “AC” components in 
the beam current 
§ For flat vacuum chamber the wake and the detuning wake are equal and therefore tune 

variations can be computed using results obtained for coherent betatron tune shift 
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§ To compensate tune variations along the beam the modulation of lattice betatron tune on 
revolution frequency is required 
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• Interaction of the beam DC current with iron of the dipoles causes additional 
incoherent tune shift 

η
νγβ

π
ν 23

22

12 d

b
icB amc

ReI
−=∆  

ad – is the dipole half-gap  
η – fraction of the orbit with dipoles 

That tune shift is almost two times higher than the incoherent tune shift due to vacuum 
chamber 0icν∆ (∆νicB= −0.332 for ad=10 mm) 
Ø If the ring is partially filled then there are tune variations proportional to “AC” components in 

the beam current. Their amplitude will depend on the thickness of vacuum chamber and dipole 
laminations. 
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4. Feedback System for Suppression of the Transverse 
Multibunch Instability 

Standard system 
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N – number of bunches 
T – revolution period 
g(t) – response function 

Perturbation theory solution 
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Integrating type narrow band system 
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g0=0.1, τ/T=9.485⋅10-5, µ0=2π0.46, 
N=105  
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• There is no principal limits to reach damping faster than the revolution time 
• Narrow band system can be stable in the entire frequency range 
• Technical problems 
Ø Signal transfer from BPMs to kickers 

♦ Forward transfer 
v Expensive tunnel for signal transfer 

♦ One turn delay 
v Large betatron phase shift after one 

turn 
v Large delay ⇒ digital system 

♦ Practical system needs subtraction of 
orbit offset 
v Slow feedback to nullify BPMs 
v Or notch filter at revolution frequency 

which will reduce maximum 
achievable gain 

Ø Limits of the system gain  
♦ Final accuracy of electronics  
♦ Emittance growth due to BPM noise 
Ø Kicker voltage 

♦ 5 m, ±10 kV kicker suppresses 2.5 mm injection oscillations at 1 turn  

Practical system for the case of 
aluminium vacuum chamber at 78 K 
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g0=0.005, τ/T=5⋅10-4, µ0=2π0.46, N=105 
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System with delayed response 
Single system with delayed response  
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N – number of bunches 
T – revolution period 
g(t) – response function 
jd   – number of skipped bunches 

Perturbation theory solution 
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Integrating type system   
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Optimization strategy 

• Suppress resistive wall instability at low frequencies 
• Achieve minimum increments at higher frequencies 
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Double system with delayed response  
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N – number of bunches 
T – revolution period 
g(t) – response function 
jd   – number of skipped bunches 
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Comparison of single (µ0, g0) and double systems (µ1=µ2=µ0/2, g1=g2=g0) 
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Dependence of absolute values of eigen-numbers on system gain, g, for different betatron 
tunes. 
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Damping decrement        Residual instability increment 

N=105, jd =50;   Single system:   g0=2⋅10-4, τ/T=2.5⋅10-2, µ0=2π⋅0.27,  
 Double system: g0=8⋅10-8, τ/T=2⋅10-2,    µ0=2π⋅0.46.  

Conclusions for a system with delayed response for VLHC 
• System allows to reduce a requirement for the damping decrement of the bunch-

bunch dumping system by an order of magnitude 
• Installation of multiple systems does not allow to increase the total damping due to 

anti-damping at high frequency. 
•  Decreasing the number of skipped bunches one can improve performance but it 

increases noise effects due to smaller beta-functions 
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5. Emittance Growth Suppression 
 
Emittance growth due to noises♦ 
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is determined by spectral density of BPM noise 2
ωx , system gain and beta-function 
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β1 – beta-function at BPM 
β2 – beta-function at kicker 

 
  

                                 
♦ Emittance growth due to noise and its suppression with the feedback system in large hadron colliders, V. Lebedev, et.al. 
V.V.Parkhomchuk, V.D.Shiltsev, G.V.Stupakov; SSCL-Preprint-188, Dallas, March 1993 and Particle Accelerators, 1994, v.44, 
pp.147-164 
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Theoretical limit for the standard narrow 
band system  

• Effective BPM noise of the feedback 
system is determined by the thermal 
noise of amplifiers is  

22
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Factor of 2 appeared because the 
system consists of two independent 
systems shifted by 90 deg in betatron 
phase  
ρ = 50 Ω,  T=300 K, Ib=0.19 A, 
ZBPM=12 Ω   ⇒    

2
ωx =10-20 cm2 s,    2x = 0.02 µm (∆f=25 MHz) 

⇒   ≈
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ε
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1.3⋅105 days   - at the injection  

• Required BPM accuracy 
Emittance growth time > 100 hour  ⇒  

bunch position measured with    2x = 3 µm   (180 times of theoretical limit) 
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Conclusions 
• Multi-bunch instabilities can be suppressed 
• To suppress the resistive wall instability 
Ø Increase vacuum chamber thickness to 2 mm and vertical size 

to 2×12 mm will be extremely profitable 
Ø Two feedback systems required 
§ Low frequency system with high gain, narrow band and 

delayed response to damp low frequencies 
♦ Unstable at high frequencies 

§  High frequency system to restore stability at high frequencies 
• wide band, moderate gain and one turn delay    

♦ Unstable at low frequencies 


